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1, INTRODUCTION

A binary tree is a finite set of nodes, either empty or containing one node
called a root, such that all other nodes are partitioned into disjoint sets which
are respectively called left and right subtrees of the root. The subtrees also
satisfy the definition of a binary tree. Thus, a binary tree is an unlabelled
rooted arborescence with successors of at most degree two distinguished only as
left and right.

Figure 1.1 shows a binary tree with six nodes. The root node is shown at
the top and is connected by arcs to two immediate successor nodes which are the
roots of its left and right subtrees. Each node with no successors (for in-
stance, the left subtree of the root) is called a leaf. The level of a node
indicates how deep it is within the tree. Thus the root has level one, its
immediate successor nodes have level two, and so forth down the occupied por-
tions of the subtrees. The height of a binary tree is the largest occupied

level. A full binary tree has no internal vacancies (unoccupied nade positioms).
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FIGURE 1.1 - A Binary Tree with Six Nodes (X

Binary trees are frequently used as iurormation storage structures on
digital computers. For instance, one of vhe most popular methods of randomly
retrieving information by a key, or symbol, is to store the key data in a

binary tree. To search for a particulecr symbol, we begin by looking at the



root and proceed by applying the following rules recursively:
1. If the symbol matches the root symbol, the symbol is found.
2. 1If the symbol is "less than'" the root (according to some binary
ordering relation) continue the search by considering the left

successor of the root as the new root (of the left subtree).

3. 1If the symbol is greater than the root, continue by searching the
right subtree.

4. 1f there is no root, the symbol is not in the binary tree.

We assume for simplicity that all symbols are distinct with respect to the
ordering relation. Otherwise, the ordering relation and search must be modi-
fied in an obvious fashion. The construction of a binary tree for use by such
a search scheme may be performed by sequentially examining the key symbols to
be inserted. This binary tree sort is a one pass ordering procedure which
proceeds:

1. If there is no root, insert the symbol as the root.

2. If the symbol is less than the root symbol, continue by considering
the left subtree.

3. If the symbol is greater than the root symbol, continue with the
right subtree.

As an example, consider the six symbols ABCDEF and a lexicographical binmary
ordering relation. Suppose that the particular permutation of symbols ex-
amined is BDAFCE. The resulting binary tree is shown in Figure 1.2, and has
structure identical to the tree in Figure l.l. Note that this same tree may
have resulted from other permutations of the same symbols, for instance
BADCFE. Therefore, there is a many-to-one mapping of key symbol permutations

to corresponding binary trees.

FIGURE 1.2 - A Binary Tree with Inserted Symbols



The height of the binary tree in Figure 1.2 is four and thus the maximum
number of comparisons required to insert another symbol is four. Similarly,
if this tree is used for retrieving symbols, the maximum search length for a
symbol in the tree is four, and for a symbol not found the maximum is five.

A computer implementation of a binary tree storage structure requires
that each node be represented by its key symbol accompanied by sufficient
additional information to identify and access the left and right subtrees.
This 1s usually accomplished by use of a dense array of rode symbols each
with left and right pointers, by node storage via address calculation into an
array space sufficient to store all possible binary trees with a given number
of nodes and some maximum height, or by some similar method.

In the following sections we study this widely used class of binary trees
in order to provide information useful in examining algorithms based on this
storage structure. A closed form counting formula for the number of binary
trees with n nodes and height k is developed and restated as a recursion more
useful computationally. A generating function for the number of nodes given
height is developed and used to find the asymptotic distribution of binary
trees. An asymptotic probability distribution for height given the number of
nodes is derived based on equally likely binary trees. This is compared with
a similar result for general trees.

Random binary trees (those resulting from the binary tree sorting algo-
rithm applied to random strings of symbols) are counted in terms of the mapping
of permutations of n symbols to binary trees of height k. An explicit formula
for this number is given with an equivalent recursive definition for computa-
tional use. A generating function is derived for the number of symbols given
height. Lower and upper bounds on random binary tree height are developed and
shown to approach one another asymptotically as a function of n, providing a

limiting expression for the expected height.



The random binary trees are examined further to prouvide expressions for
cthe expectations of the number of vacancies at each level, the distribution of
vacancies over all levels, the comparisons required for insertion of a new
random symbol, the fraction of nodes occupied at a particular level, the number
of leaves, the number of single vacancies at each level, and the number of twin
vacancies at each level. A random process is defined for the number of symbols
required to grow a tree exceeding any given height.

Finally, an appendix is given with sample tabulations and figures of the

distributions.

2. NUMBER OF BINARY TREES OF A GIVEN HEIGHT.

In this section we consider the problem of finding the number of binary
trees with n nodes and height k. Denote this number by t(n,k) , where n

and k are positive integers. Since t(n,k) = 0 wunless
k<n<2 -1 (2.1)

we are only concerned with integers n = 1,2,...; k = 1,2,... satisfying the
inequalicy (2.1).

An explicit formula for the numbers t(n,k) can be obtained by the fol-
lowing simple combinatorial argument. Consider the class of all binary trees

with n nodes and height k which have exactly m, nodes at the level j+1,

3

j=1,...,k-1. Let m, = £ + r,  , where £, and r are numbers of nodes

J 3 3 3 b

which are left successors and right successors of nodes at the level j. 1In

other words, Zj is the number of nodes at level j+1 at the end of left
m
going arcs emanating from nodes at level j. These can be selected in (kj'l>
m_ KJ
3 3 l) ways. Thus, the total number of
3

ways to arrange the arcs between nodes at levels j and j+l1 1is given by

ways, and the r, nod -~ in (

T
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Since T, - 1 (the root) and oy Fooet m = n-1 with mJ > 1 for j=1,...,k

we obtain from (2.2) the formula

2 2
t(n,k)-Z( 1) L. (e , (2.3)

& s -1

where the summation is over all integers mj » J=1,...,k satisfying

j 2L, 3=l,.00,k=1 ,

and

m +eesdm o o=l

The formula is valid for n>1 and k satisfying (2.1), for n=1 we have
trivially t(1,1) = 1.

Although (2.3) is an explicit formula for the number t(n,k) it is not
very convenient for calculation. An alternate way is through a recurrence.

Let
t(n,k) = T(n,k) - T(m,k-1), n>1l, k>1 (2.4)

where T(n,k) is the number of binary trees with n nodes and height not

exceeding k. If we define

1 1if n=0

T(n,0) = { . (2.5)
0 if n>0

and T(0,k) = 1 for k >0 , we obtain the recurrence relation

n
T(otl,k+l) = Z T(3,k)T(n=],k) , (2.6)
30



valid for n>0 and k>0. This follows from the fact that the class of all
binary trees with n+l nodes and height not exceeding k+l1 can be partiticned
into n+l subclasses according to the number of nodes j 1in the left subtree
of root. Since the heights of both the left and right subtrees must not exceed
k the number of trees in the Jj-th class is the product T(j,k)T(n-j,k), and
(2.6) follows.

Note that with the convention (2.5) the recurrence (2.6) yields automatically

T(a,k) = 0 for n>25-1,

and that for 0 <n <k, T(n,k) is just the number of binary trees with =n

nodes. It is well known (see [Knuth, vol.3]) that the latter are Catalan

1 2n
Cn- ol . », 020 2.7)

numbers

so that
T(n,k) = Cn for 0 <n <k, (2.8)

From the recurrence (2.6) one easily obtains the sequence enumerators
defined by

£ (x) = ZT(n,k)xn , k>0. (2.9)

n>0

Since the right-hand side of (2.6) is the Cauchy product, we have immediately

Z T(a+l,k+1)x" = fi(x) :

n>0
from which in view of (2.5) we obtain
f + f2
kq,_]_(x) l+x£,(x), k>0,

(2.10)
with fo(x) =],



Note that fk(x) is a polynomial in x , hence if x is regarded as a complex
variable fk , k=0,1,..., 1is a sequence of entire functions.
We now show that this sequence converges uniformly in a circular region

of the complex plane, specifically that as k + =

£,(2) » w(z) uniformly for |z| < % , (2.11)

where >
w0 (m)e-raE

n=0

To see this, note that with Cn as in (2.7) we have T(m,k) < Cn for all k

which together with (2.8) yields

w(z) - £, (2) = 2 Z (Cy=T(a,k)) 2",

a>k
1
so that for |z £ 2
lu(z) = £.(2)] < Z c lz|" < E c 4",
n>k n>k

which is a tail of the expansion u(%) =2,

This result will now be used to develop an asymptotic distribution of
tne numbers t(n,k) as k +« . In doing this, we follow the method of
Renyi and Szekeres used in [8) for a similar problem.

From (2.4) we have for k > 1, t(0,k) =0,

Zt(n,k)zn = £.(2) - £_,(2) , (2.13)

n>0

which are entire functions for every k > 1. Hence by the Cauchy formula

£.(z) - £, .(2)
t(n,k) -—l-f k 3. SO T (2.14)

2wi n+l
b



where we take the circle |z| -%’- as the contour of integration. To estimate
the integral we use Laplace's method by first showing that as k + = the only
significant contribution of the integrand is in the vicinity of positive real

axis.

Let F(¢,2) = 1 +%‘- e“zz y "M < < (2.15)

and let for ¢ fixed

Fk+1(¢oz) - F(¢)Fk(’$sz)) ’ k _>_ 1,

F1(¢,2) = F(¢,2) .

Then

PE LI
fk( z® ) Fk(¢,l) > k>1, (2.16)
i.e. fk are iterates of the function F . For 2z = -4]5 ew the function
w(z) defined by (2.12) satisfies
F(¢,0) = w, (2.17)
and is given by
u(% e“) a 3571 (1 - /10 ), (2.18)

where ReY 1=a™* > 0 . The curve u(% ei't') y =m<¢ <1 1is therefore the

curve of fixed points of the function F($,+). For any particular ¢ the

derivative
% F(¢,2) = F'(¢$,2) = % ewz so that
for z = w we have
Fro,a] = 13 et = 1 - 1=t ] (2.19)

The locus of points l-em y =T < ¢ <7 in the complex plane 1is an

Lemniscate of ternouili with polar equation pz = 2 cos 8, while 1 - l-eiQ



just suifts the curve one unit to the right. (See Figure 2.1)

/‘ w0 *" ‘\\
ten - \
...... dhdl=
1_/5 \_/ 1% /l
FIGURE 2.1
dence
[F'(o,w)| <1, (2.20)

with equality if and only if ¢=0. Thus, if ¢#0 all fixed points (2.18)
are atractive and since fk are iterates of the function F converging to

w this implias that as k + =

k
£ 2 = u( e+ o<|1 «  126¥ > (2.21)

uniformly for |¢]| > ¢ > O.

The modulus |1 - ¥ 1-el? | 1s a decreasing function of [¢| in

0 <|¢] <7 with maximum ! at ¢ = 0. Further denoting u,(¢) + 1v,(¢) =

=] -~ /l-ei¢ the real and imaginary parts have asymptotic expansions

o =1-/F - 3(/F) + o)
v () = ¢+ /_-g-—i (/?)3 + o(¢5/2) ’

as |¢| - 0 . Hence for sufficlently small |[¢| |1- 1-et? | <1-

(2.22)

/Lal,

N

2
2
and thus if we choose for instance |¢| < (fﬁ_&) we obtain from (2.21)



as k+o
1 i¢ 1 14 -I.nzk)
fk(-ze )' w(ze )+O(e . (2.23)
Remark: The same result can also be obtained more directly by writing

£ 002 - u(z) = 1+z fi(z) - (- z Wi (2))

= z[f, (2) - w(2)]{f, (2) + w(2)].

Then choose ¢ > 0 such that |uw (% eu’) | > € for all ¢ and choose K
such that k > K=>|fk(% em) - w(—i‘- e“) | <€ . Then with z = %- el for

k> K
1
lfk-l-l -u| < zlfk - 0| 2|u] + €)

whence for all m > 1
£ - ol < £ - 0l(]L - V1t + o2 .

Hence (2.23) follows by the same argument as before.

=1
If we now substitute (2.23) into (2.14) we have with 2z = Z°

" Y
t@k) - 3 [fk(% ) - (d e“)] ey

P2
(% ei¢)] o109 g4 4 40 o(eLnk) ’

(2.24)
ank)z
ol < (%
as k + =
To estimate the remaining integral we first set ¢ = 0 and call
1

@ = fk (z) g (2.25)

The recurrence (2.10) yields

-1+i a2 -

N el 1+ 7% > 9% 1l (2.26)

10



from which by substitution YW " 2 - e we obtain the recurrence

.y, -2 .
el Tk T3 % 0 Yo Tl (2.27)

Thus Te is the k-th iterate of the function 4£n(x) = x - % x2 , and iterates
of such functions can be nandled by standard methods (see e.g. [de Bruijn, 3,

sec. 8.7 or Exercise 8.11]). We obtain the asymptotic expansion

4 4 fnk -2
yk--lz-——-—kz + 0k °) , or
1 4 4 &k -2
fk(z)-z-z+——+o(k) is  kooe . (2.28)

k2

’'n2
To obtain the expansion for |¢] < (—ul:—k) we assume that it has the form

1 16} _,_1 Lok -2
g (2et)-2-Lg e+ E 85 + 00T
(2.29)
where Ei = i¢k2 .

For ¢ fixed we then have E,‘+1 = Ek +% Ek so that

b
wiles® ) =2~ *

1 -2
—_— g (E+= )+ Ok ),
4 ¥+ 1 (k+1)2 2 k

where £ = Ek . Using the expansion
-]-'- s - 5- ! > cee
81(5 + k ‘-) 81(5) + k 81(9) + ’

8 (5 + 2 5) = gy () +T (B + oor

0 SN SN S S S

k¥l k-1 kT 273 ’

= 2" v L '1—"'2—""" and
wn? W anch? 3T

La(k+l) = &n k +

|
'

*« , we obtain after collecting terms

11



1 1¢\ 1 1’.n k
» (2.30)
1 ' k ' -2
+ 2 (8, (&) - &g,(8)) - o [28,(E) - €g,(8)] + O(k ) .
On the other hand from (2.10) £, (Fe'*) =1+ ¢ (361)
2
2
whence using (2.29) and c“ = ¢(k> -1 +(é) + eee | we have
fn () = 2-5 50 + L:z 8, (&)
(2.31)

1 12 Lak 1
vt lgea® £2] ST BOR® ¢ ok”?)

Comparing terms of (2.30) and (2.31) we obtain
8,(8) - &8(8) =F 850 + &,
28,(8) - Eg,(D) = 3 8,(D)g,(8)
with initial conditions 31(0) - 32(0) = 4 from (2.28). These equations

have a solution

8.(8) =26 cot 3 & , g,(8) = E2(sin 3 )7,

which, when substituted back into (2.29), gives

£ k

£ Pstn 3072 + oD,
k

(2.32)

k(-}.’-e:L¢ Ecot%’-&;-&-

2.1\2
where £ = 14k’ , ] < (-4:—1‘>

1 1¢ (1 i¢
Next k(4 > fe-1\T ¢ k15k1°°° k-1
2 1 Lok 2 I -
-Egk COCEER kz ﬁk(inzek) 2
= .é';(k_-]i Ek 1 (sin = l Ek l) + 0(k-3) ,
(k-1)2

12



and setting Ek-l-g-%e > E-Ek » 80 that =1 "k ° and using

the expansions

coc%(s-%e) -cot%a'*-z-i—a(sin-z-s)

2

- &
-zk—zcoczs(sin E) + ,

ﬂn(k-l)-ﬂnk-%+-u Nl

-2 -2
(sin%(&——i-a)) = (sin%i) (1+%£cot%a+---),
we obtain
1 1 L 40y 1 20, 1,2
£ (7)) -, (5¢™) Co (8350
a k 1. 2 g
-—53 oc—E(si— +5-§-(sin—
3 2= 2
k k
3 1 15
- cot-z- (sin £)" +0(k )
4k 3
However, for g2 = 14k2 , |¢| < (Zn k) , we have
=2
Ecot%a-o(ﬂnzk) , |sin % | +0 as ko=,
so that we can write
116 1.40y.L _ ¢ fa*k
G (3 M) - (M) -4 —F1— +ofBE). (2.33)
k® sin 3 £ k

The same expansion can also Er; obtained by again substituting (2.32) into
the recurrence (2.10). If we now insert (2.33) into the integral in (2.24)

and use the substitution £2 = i$k? , (2.24) becomes

n .2
AR T2t 2a®x
t(n.k) = Z—Tl’i_ —;- ——g'— e = dE + 4 0< 5 ) ’ (2-34)
k -
T sin k

N

13



where the path of integration [ as determined from the condition

2.\2
lo] < (Zz k) is (see Figure 2.2):

E = t(-1+1) for -Aﬂnzk<tio .

V2
E=1(l+1) for 0_<_1<L-Ln2k.
2

The integrand is a meromorphic function with poles at

Em - 2m , nmn=3x1,2+2,...,

and corresponding residues

-2 om)’

r(gm) a l»[3(2'trm)2 -2 :1- (Zmn)u] e . r

Before applying the residue theorem, we have to close the path of integra-

tion, for instance by the arc (see Figure 2.2)

A: -19 2 T T
g pke ’ pk znko -Zief_z .

Deforming the arc in the neighborhood of the real axis so that it passes

(2.35)

(2.36)

2 2
approximately in between the two poles we have from [sin z| = sin’x + sinh y

|sin%£|-2§_1+n », n>0

along the arc for large enough k . Hence

14



3 -%52 /2 -lz-pi sin 8
/ __E.T_ e k dg < (l+n)p; / e k de
2 =
A sin 3 & 0
2n 2 n 2
AR 1R @rn)m o2 &2 -7k
< (1+n)pu e e de = k l-e
k 2n
0

(l+n)n pi kz n o, 8
< =% " O(lnk) as k-+e . (2.37)
2n k

Finally, applying the residue theorem to the integral over the contour T + A

and using (2.34), (2.36) and (2.37) we nave the asywmptotic expansion

- 2 om)”
t(agk) = 42"k i_‘* E [z i‘;(zm)“ - 3(21rm)2] N
m>1
<P nl 8 8
+ 4“o(e I’“k) + 4n0<1_l:_5_15> + 4“0(1'::‘) 5 (2.38)

From here we can get the distribution of heights of binary trees with n
or equivalently the probability that a randomly selected binary tree has height
k 1f all binary trees with n vertices are considered equally likely.

Calling this quantity pn(k) we have

p_ (k) = Hk) (2.39)

c
n

where Cn = E t(n,k) 1is the catalan aumber (2.7). Using the asymptotic
k

n .
expansion (6] C_ = 4 + 0 (Ann 3/2> we obtain for large k and n,
N

15



Py(k) = 8 v/? 8* Z [23(2"“)“ - 3(2m)? ]e -(2mm) 28

o>l
(2.40)
Pl 3/2 , 8 3/2 , 8
-4-0(:13/2 e an)+ 0(—-——n slnk>+ 0(—-—u “Lnk) ’
k k
where 8 = % . Note that if k < n , which is the case of interest, the
k

dominant O-term is the last one. Thus, if for some arbitrarily small 6§ > 0
<k <a , (2.41)

then as n + =

p k) ~8/ L g > [2s(zm)“ - 3(2mn)2] o 28 (2.42)

m=1

To verify that (2.42) is indeed a probability distribution note that as

n > o

PILXCES 8/ /az 2 [28¢2mm)" - 32rm)” | e -rs g,

k o=1

where the limits of summation and integration are given by (2.4l). Making a

n
k= /3

substitution

we have as n + =

[ ] -] 2
% i Z z(zm)" / 2832 o -(2mm) 8 4
m=] 0

2
E (Zm)Z/ 3pl/2 o ~(2m) 8 4
0

16



‘ But

® 3 2 @
/ 3pl/2 @8 o | 032 2m)'s

0

0

i 2
- (zm)zf 233/2 ~@m) 3 4,
0

and we are left with

- 2/ o 2-\
tea 45 2 2(2mm)? 3377 ¢ ~(2m) 3
B0 o=

2
/uzeu du = 1

0

IR

2
by the substitution u2 = (2mrm) 3

If we denote JCn as the random variable with distribution pn(k) and call the

asymptotic distribution function

F(x) = lmP[ —— <x (2.43)
a1

we obtain by integrating the right-nand side of (2.42) over 0 < k < 2x a

by the same method as above
2

2 _(zam
F(x) = 4x> 70/2 2 :mz e ( x ) (2.44)
o=l

It can easily be seen from (2.43) that for x = OGG;) F(x) - 0 and
thus the asymptotic distribution (2.42) or equivalently (2.43), (2.44) is

valid for all k in the range (2.1) as n - =, (See Appendix, Figure A.l).

17



Tnis is identical witi tihe distribution function obtained by Renyi and
Szekeres (see [8] p. 506) for the height of general (as opposed to binary)
trees. Only tne normallizing factors in (3.43) differs by a constant, namely
V2 . More precisely, if Jc,; is the heignt of a general tree with n nodes
(i.e. with no restriction on the number of successors of a node) then for

large n

X~z A, (2.45)

a somewhat surprising result.

3. BINARY TREES GENERATED BY RANDOM PERMUTATIONS.

As described in the introduction the tree insertion algorithm defines a
map which assigns to every permutation n(l,...,n) a binary tree with n
nodes. If all permutations of integers 1,...,n are considered equally
likely the resulting trees are referred to as random. Thus, every numerical
quantity defiped on a binary t“ree becomes a random variable.

Let Hn be the height of a random binary tree with n nodes, i.e.,
generated by random permutations of the first n integers. Clearly, the
probability

PH, < k) = i B(a,0) , (3.1)

where B(n,k) is the number of permutations n(l,...,n) mapped into trees
with height not exceeding k . (See Appendix, Table A.2).

In order to obtain an explicit expression for (3.1) we first need a
suitable indexing system for the nodes. : natural way to do this is to con-
sider first a full binary tree and label its nodes by the sequence of
positive integers starting from the root and labelling in each subsequent level

from left to right. (See Figure 3.1).
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level 1
level 2
level 3

FIGURE 3.i

Thus nodes at level j , j = 1,2,..., from left to rizht have labels
(3.2)

Note tnat the left and right successor of a node labelled x have labels
2x and 2x + 1 respectively, left successors always have even labels, right
successors nave odd labels ( the root being an excep:ion).

Jext consider a fixed bianary tree with a nodes and for every label x

of the form (3.2) define

‘ 0 1if there is no node with label «x ,

d(x) = (3.3)

l 1 +d(2x) + d(2x + 1) if there is a node with label «x .
Note that d(x) is simply the number of nodes in a subtree with root at x ,
in particular d(l) = an and d(x) = 1 4if and only if the node labelled x

has no successor, i.e., is a leaf.

Lemma: There is a one-to-one correspondence between binary trees
with n nodes and height not exceedinz &« and the set D(n,x)

of vectors
(d(1),d(2),...,d(2" - 1))

with non-negative integral components satisfying the conditions:

19



(1) d(l) = n ,
(2) For all I=1l,...,k

i-1 k-j+1 _

A loxcdg =0<cd <2 1.

(3) d(2x) + d(2x+l) > 0 => d(x) = 1 + d(2x) + d(2x+1) .

Proof: Given a binary tree the numbers d(x) are uniquely
detined by (3.3). Property (1) is obvious, property (3) follows from

(3.3) since nodes 2x and 2x + 1 are successors of node x , hence

if there is a node with labels either 2x or 2x + 1 there must be one

with label x . Property (2) is necessary since if it were violated
then there would be a subtree with root at level j having at least
2k-3*1 podes »nd the height of the tree would then exceed k . Con-
versely, given a vector (d(1),...,d(2&1)) satisfying (1) - (3),
construct first a complete binary tree of height k and then eliminate
all nodes with labels x such that d(x) = 0 . Properties (1) - (3)
then guarantee that the result is a binary tree with exactly n nodes.

A vector (d(l),...,d(Zk-l)) € D(a,k) can be used to compute the number
of permutations mapped into the tree corresponding to this vector. Consider
a permutation w(l,...,n) = (sl,...,sn) mapped into a binary tree with height
not exceeding k and look at the node into which a particular symbol, say
8 » is mapped. Let X, be the label of this node and let L(si) and R(si)
be the ordered subsets of (sl,...,sn), which are mapped into the left and

right subtrees of the node x By the very nature of the mapping if the

i L]
elements of L(si)\J R(si) are reshuffled the tree is not changed as long as
the order of elements within each subset L(si) and R(si) of L(si)kJ R(Si)

preserved. But the numbers of elements in L(si) and R(Si) are d(in)

and d(2xi + 1) respectively so that the nusber of permutations resulting

20
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from such a reshuffle is

[d(2x)) + d(2x, + 1)]! [d(x,) - 1]!
d(2x )7 d(2x; + D) - d2x )7 d(2x, + DT

using (3.3) and d(xi) >0 (since s, 1is mapped into a node labelled x

i i)'

Repeating this argument for each node of the tree corresponding to

(d(l),...,d(Zk-l)) gives the total number of permutations
n |d$x) - 1]
d(2x). d(2x + 1) °

vhere the product is over all d(x) >0, x = l,...,Zk-l

-~ 1. From here

using the lemma and (3.1) we obtain the formula

[d(x) = 1]
M 3@ a@eDT (3.4)

n_ln—-

P(Hn <k) =
* deD(n, k)

Note that if d' = (d'(1),...,d' (2

- 1)) 1is obtained from d = (d(1),...,d(2%-1)) .
by |

d(x) 1if d(x) >0
d'(x) = (3.5)

1 if d(x) =0

the formula (3.4) takes on a simpler form

k -1
2%-1
P(H <k) = Z M d'(x) . (3.6)
= deD(n,k) \ x=1

Unfortunately, except in a few special cases, the set D{n,k) 1is quite
complicated for (3.6) to be useful for computation. Again a recurrence re-
lation may be preferable.

Indeed, such a recurrence is quite easy to derive. Consider the left
and right subtree of the root of a random binary tree with n nodes. If

J 1s a random number of nodes in the left subtree then we have

H = 1 4+ max {} H

n+l (3.7)

1
J? a-Jd’
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Now J 1s simply the number of symbols in a random permutation
7(l,...,nt+l) = (sl""’sn+l)’ which are less than 8 - Therefore, J is

uniformly distributed over (0,...,n}, and HJ and Hn— are conditionally

J
independent given J . Consequently
P(H -1k |JT=13)= P(H, f_k)P(Hn_j < k),
from which by calling
F(n,k) = P(Hn.i k) (3.8)
and taking the expectation we obtain the recurrence
o
2l = E =
F(+l,k+l) = —= F(j,k)F(a-j,k)
i=0
valid for n>0 , k>0 if we define (3.9)
1 if k=0,
F(0,k) =
0 if k>0.
It may be noted that (3.9) gives
F(n,k) =1 for 0 <nm<k , and
] (3.10)
F(n,k) = 0 for n > 2° , as expected.

Now (3.9) can be used to calculate the numbers F(n,k) for moderate values
of k and n ,(see Appendix, Tables A.2 and A.3, and [2])), however the memory

requirements increase rapidly.
It can also be used together with (3.10) for some special choice of n

and k . For instance for n close to Zk-l we obtain

k = 27
F(2%1,k) = jgl<?_i_l> , k>1, (3.11a)
F(2%-2,k) = (%DF@*%-1,60) , k21, (3.11b)
F25-3,) = (2% @ nre*1,0 , k> 2, (3.11¢)
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and a few more. Note that (3.11a) is the probability of obtaining a full

tree of neight k . However, these few terms are of minor interest.

Another possible approach is to use generating functions. Defining

fk(x) = Z:F(k,n)xn , k>0,

n=0
we have ‘mmediately from (3.9) the relation

X
2, =
fk+l(x) 1+/fk ysdy fo(x) 1.
0

(3.12)

(3.13)

Note chat fk(x) are again polvnomials, fk(O)-l , and that for all x ¢ (0,1)

£ < £ (x) Q)Y as ko= .

It is hoped that (3.13) can be used to obtain an asymptotic distribution of

the heights Hn . However, we have not been successful in that respect

to date.

It has been suggested to us by A. Washburn that a lower bound on the

expected height E{Hn} can be easily obtained from (3.7). Taking expecta-

tion we have

E(H ,,} = 1+ E{max(H; , H _1)}

and conditioning upon J

E{max(Hy, H__;)| J=3} > max(E{H,}, E(H__. D .

3 3

Since J is uniformly distributed over {0,...,n} this implies

n

E{ma.x(HJ. Hn—J)} > -r% Z max(E{Hj} . E{Hn-j})

3=0

(3.14)

(3.15)

Hence 1if a s = 0,1,..., 1is a sequence of numbers defined recursively by
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n
=1 +;_t—l Zmax(uj,an_j) » g = 0, (3.16)
j=0

o+l

it is easily seen from (3.14) and (3.15) that

E{Hn} > a, for all n=20,1,... (3.17)

Note that e, is a strictly increasing sequence so that

22 “j for n odd ,

n n/2<j<n

Ema.x(aj,an_j) = ¢

3=0 q/2+2 Z aj for n even.
. n/2<j<n

Since clearly @ = O(n) we have as n + =

2
o,k Z %

n/2<j<n

which upon approximating tine sum by an integral yields
1

a(e) ~1 + 2/ a(ty)dy . (3.18)
1/2

On the other hznd, let Y be 3 random variable defined by
{ J if HJ > Hn—J ,
ny =
n-J if H. < H

Then

nY < max{J,n-J} , (3.19)
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and by (3.7)

E(H .} =1+EH ) . (3.20)

n+l

Now for large n , Y 1is uniformly distributed over ( 12'- , 1), and since
u(n) = E{H }

is an increasing function of n we get from (3.20) by conditioning on Y and

applying (3.19) the asymptotic inequality
1
u(n) <1+ 2 / u(ny)dy (3.21)
1/2

valid as n + «» ., But this together with (3.17) and (3.18) indicates that

we should have in fact

u(n) ~ a(n) as n -+ = (3.22)

where a(t) 1s a solution of (3.18). It is easily verified that (3.18) has

a solution
fn t

{O) *TImz o

where ¢ 1is an arbitrary constant. But as u(n) - = the constant can simply

be disregarded and we have an asymptotic equivalence
u(n) ~ (L - £0 2)"F tn n = 3.25889 £ n (3.23)

as n+ =, (See Appendix, Tables A.2 and A.3).
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4. FURTHER RESULTS FOR RANDOM BINARY TREES.

We now turn our attention to some other quantities associated with random

binary trees. In particular we wish to study the process of growing the tree
as the number of nodes increases. A convenient way to visualize such a process
is to consider a sequence xl,xz,... of independent random variables with a
common continuous distribution and take as our permutation the ranks of
xl,....xn for each n = 1,2,... . Clearly, for each fixed n all resulting

permutations are equally likely, and each new symbol, i.e., rank of 1° is

xn+
uniformly distributed over {1,...,a+l}.

If for some n we have a random binary tree then a new symbol will be
mapped into a new node. This new node can appear in one of n+l possible
locations in the current tree. Following Knuth [6] we will refar to these

locations as vacancies of the current tree. They are depicted in Figure 4.1

as empty squares.

FIGURE 4.1
Let for n>1, 3 > 2, Vn j be the number of vacancies at level j at
- - ’
time n , i.e.. in a random binary tree with n nodes. Clearly Vn j =0
]
for j§ > utl and
Vn’2 + vu,3 Feoot Vn,n+l =n+1 . (4.1)
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Also, obviously

Vi,25% -

Suppose now that at time n the vacancies have values vn,2""’vn,n+1 .
Since a new node is equally likely to fill any of the :urrent n+l vacancies,
the probability that it will £ill a vacancy at level j egquals

v

a1
n+l °
But then vn+l,j = vn,j -1,
Vorl, 441 " Vo,qe1 v 20
while
vn+l,i ¥ ol for all 1i#j , i¥j+l .

Thus if we define a sequence of random polynomials

Wo(x) = Zvn’j <1, w1,

i>2

we see that these polynomials form a Markov chain with transition probabilities

v

P(wn+1(x) w0+ 3D | W - "n(")) metil

n>1, j=2,...,n+1, and the initial state

wl(x) a 2x . In particular we then have

o2
v
E{W 00 | W 0] = W+ ij-l(Zx-l) Sl
j=2

= wn(x)[l + %EELI ] » n>1. Consequently

E{wn(x)} = (1 + z_:-;) (1 + [21":11) (1 . 2;—1) -

n+l
n
- Lok oor (eeen - L Z [j 1] ot (4.2)
j=2 L7
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n
where [ ] are Stirling numbers of the first kind in Knuch's definition and
m

notation [6]. Thus

j=1
2 a
E{vn.j} © Tl [J—l] y 3 =2,...,n+1, n2>1, (4.3)

gives us the expectation of the number of vacancies at various levels. (See Appendix,
Table A.5). Other quantities of some interest may be obtained from here.
For instance the expected distribution of the number of vacancies over levels

is immediate

gt i, ] @t
J=2,...n+1;0n2>1.

Next let Kn be the number of comparisons needed to insert a new (n+l)st
symbol into a binary tree by the algorithm described in the introduction.

Then the probability

Vn,n+l

P(K_ = k) = E{P(Kn - tlwn(x))}- g {2

= vn(x +1) ,

k=l,...,0 , n2>1,

since the number of comparisons is «x if and only if the symbol fills a
vacancy at level x+1 . Recalling that the Stirling number [:] is also the

number of permutations of n symbols with exactly «k cycles we can write

2‘
P(Kn =x) = =9 q,(x) ,

where qn(x) is the probability that a random permutation of n symbols has

x cycles. (One wonders whether the number of comparisons can be related to

the number of cycles.) (See Appendix, Table A.7).
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With

2 fn
P(Kn = k) -m[’(] sl =L S,

the generating function (by definitiun of the Stirling number) is

n
+ -
Gn(X)-z:P(kn.‘)xK- 191 2%-0%1' :
s k=1

Hence kn is a convolution, kn =X + eee + X, where the x s are inde-

pendent Bernoulli variates:

2
LI PRy
X, =
k-1
0 U = e+l *
n
. 1 1 1
Consequently e, = E{kn; = P, = 2 5 +4§ + s 4 =
K=l l

= 2(Hn+l -,

with Hn representing the Harmonic number [6] (See also the Riemann Zeta

function in Abramowitz and Stegun [1].).

n n n
2 2 : z : 1 2 ; 1
o, " Var {kn} = P9, 2 gy 4 :
K=l k=1 K=1 (+1)
. a2y L L (2)
Z(Hn+l - 1) 4<dn+1 1) 2 Hn+l -4 dn+l + 2,

Since asymptotically [5]

Hn-y+£nn+2—i-+o(i3).

with y Euler's Constant, 0.5772...,
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we obtain for the number of comparisons
un..z{y-l + fn(nt+l)} = 2 La(n+l) - 0.8456 +«+

2
o2 ~2{y+l - -Z—L.’— + fa(o+l)} = 2 Lo(o+l) - 3.4253 eoo .

Since hJil adcn*c,wauMHIHMtwwumwuum

yielding
X 2
Pl ta o, v on) = = /e-g—dy
o = zm J

Also, by the Berry-Esseen Theorem (cf. Feller (4], p. 544)

k -u r
sup p(—“;—“) IO R S
x n O
where
n 3 n
2 2
s St a0 ).
=] k=1
Asymptotically,
r = =2 (u(“) = 1)+a(u(3) -1)- 3(5(2) -1)+a =
n a+l n+l n+l n+l
* “2
~- + 4(0.20205 +++) - > +v + fa(otl) +1

= o(n+l) - 4.714 o,

so that the bound
r 1l
6 _n-S- ~ 0 f__—
o Za(n+l)
which gives a fairly high rate of convergence to normality for the distribu-

tion of the number of comparisons to insert a new symbol. The results given

can be used to analyze a complete binary insertion sort algorithm operating
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on a random string of symbols. Higher order expansions are also possible for

describing this proress.

Further, let Mn j be the number of nodes at level Jj in a rundom binary
?
tree with n nodes. Since clearly

Mn,j+l + vn,j+l = ZMn,j y J=1,...,n,

with Mn,l =1, Mn,n+l =0 , n>1l, whence
1 Z L) = -
n ; -3 i- n c+1 ® ©OF upon taking the expectation
?
T=j
n
pd-1 n .
E{Mn J} = w=p= r] »  J=l,...,mn, n>1 . (4.5)
’ L]
raj

(See Appendix, Table A.4).

Note that
n
Lo sl_zn]
E{zj-l Mn,j} o [r
-4
r=jJ
is an expected fraction of nodes occupied at level j . It may be called an

expected relative thickness of the tree at level j . Looking again at Figure
4.1 we see that we can distinguish between two kinds of vacancies, those which
are attached to a leaf (and hence come in pairs) and those attached to an in-

ternal node of the tree. We will refer to these two kinds as twin and single

vacancies respectively.

(2)
n,J

the number of twin vacancies at level j in a random binary tree with n nodes.

(l)

Let for n2>1, j > 2, 2] be the number of single vacancies and V

Clearly

D D@ o o
’j ’j n)j ? 192 ' 1’2 )
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If at time n the values of these variables are

(1) (1) v¢2 v
Vn’ ,...,V ,o+l and nz ey n,n+l °

then filling a single vacancy at level j results in

R C ISR 1O SV O P
n+1 83 n,j ’ n+l j+1 n,j
e
n
with probability ;—ili y while filling a twin vacancy at level Jj results
W A @ @, ) @)
nt+l, j ,j ’ n+1,3 n,j ’ Tn+l,j+l n,j+l
e
with probability T ,Jl . The remaining vacaacy numbers are not changed.
If we again introduce the random polynomials
(D _ VT 4-1 :E: 2) _j-1
wn ‘-‘ vn)j XJ ’ xj ’

322 : 322

we obtain for their expected values the equations
w(b) - B (1) L
; (x)} ) Eg wn (x)? + oy E

(2) 2x_ n=-1+2x (2)
(")z ® afl o ngn (x)i ’

w§2’<x)§ .

Wr(xl) (x)

a>1, with E;W{l)(x)f -0, ngiz)(x)g- 2x

Since wﬁl)(x)f + E‘ H(Z)( )z = wn(x) we obtain by substitution
Eg (1) (x)f fﬁa’wﬁ”(x) Sk Wn(x)§ ,

from which by using (4.2) we have
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n=-1

VN S | :
EqW, (x)} S Z r E 3 nlt(x)$
r=1

n-1 r+l
= —1_ _l__ n r j"l
n(n-1) Z (-1 Z [1-1] (2x) (4.6)
r=1 j=2
o n-1
= Al 31 1 r
w2 @' ) g [j-l]' Rt
i=2 r=j-1
Thus,
W R
1 2 1 r
Egvn,ji' n(n+l) Z (r=1) ' [3-1] , (4.7)
rej-1

j=2,...,n ; n>1, while the corresponding expression for twin vacancies is
obtained by subtracting (4.7) from (4.3) with (4.7) set equal to zero for
j = o+l . (See Appendix, Table A.6).

We conclude this section by computing the expected number of leaves in a
random binary tree with n nodes. TFrom the first equality in (4.6) the ex-

pected number of all single vacancies equals

n-1 n-1
(1) 1 2 : 1 08
E 3Wn (1)2 ® (o) r ;Jr(l)‘ oy ~=73 E r(r+l) ,
r=1

r=1

since by (4.2) E {Kn(l) }= n+l . The latter sum equals -% (n+l) so that the
expected number of all twin vacancies is n+l - % (n+l) . The expected number
of leaves is clearly half the number of twin vacancies, that is %'(n+l)

Thus, in a random binary tree on the average about % of the nodes are leaves.
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Remark: Having in mind the process of growing random binary trees as

described above we can also look at a random process

N =1, (4.8)

0

k-min;nzﬂn>kz y N

i.e. the time (= number of symbols) needed to grow a tree over the height

k. (See Appendix, Table A.8). From (4.8) clearly
P(N, > n) = P(H_ < k) = F(n,k)

so that gk(x) =] - (l—x)fk(x) is tne ordinary probability generating function

B0 = D Py = "

o>l

of the random variable Nk . Denoting
u(m,k) = E g Nk(Nk-l) (Nk -m+1)

the m—th factorial moment of Nk and using the fact that

. d(m) q(=1)
u(m,k) = dx_m g (l) = m ! £,

we obtain by applying Leibnitz formula to (3.13) the relation °

p(m+l,k+l) = m+l Z j+l u(j+l.k)ﬁ(m-j+l.k) .

m>0,k>0. In particular with m=0 this becomes

2
NN, - 1)! =2(E{N_}) , x>0,
New1 My = 2y Ny 2

or

Var{NH_l -(E(Vk}) +E{Nk+1 [ E{Nk+l}].

Unfortunately, it is the first moment E {Nk }, which is hard to obtain for

large k . (See Appendix, Table A.7).

34



APPENDIX

35



(€7 *b3)  (A°u)3 ‘Y IyYBY°H pue SIPON U YITm saaal Aieurqg - ['V TIAVL
1449 0Z61 4 ¥4% 9eLY 950% LAJA 911 0 96,91 o1
174 zes 9.€1 oY1 v98 LA ¢ 0 z98% 6
871 zse 08Y 9L€ 6 0 0eYT 8
%9 w91 51 89 1 62Y L .
r4 > 9¢ o¥ Y AN 9
91 0z 9 A S
8 9 1 j
Y < €
z z
1 1
1 0
ot 6 8 L 9 S 9 € 1u Mwonwum

BT ST

36



(48

X Y8713 3o

(6°t °ba woay poaidepy)

$931], A1euyg o3juy SToqudS U JO SUOTIRINWIAJ JO SUOTITIIRd - 7'V ATAVL

800TT 00266 0%06L%  89SLLTT  TLOBOST 0O%YESe 0 0 008829¢ ot
9sT Zsey 9T100¢ 8Y%%01 89£89T1 0v0ss ] 0 08879¢ 6
821 7991 (49 %} 91881 09¢TT 0 0 0zeoy 8

%9 809 8%0¢ o%vee 08 0 0%0¢s L

'A% 80¢ 00% 08 0 0z¢L 9

91 %9 oY 0 0zt S

8 91 0 kXA Y

kK [4 9 t

[4 4 c

1 T

T 0

sToquis

ot 6 8 L 9 S Y £ [4 L 3o  ‘oN

FITES £T7)

37



(€2°¢ ‘6°t °"sbag woay peadepy) 1IyByoH @a1] Aieuyqg wopuey - ¢°V FIIVL

38

(U)ug6sT €~ (Wuzeyy 1) u~
LYT°¢ S8E° LY 6 00¢
2S0°¢€ €69°97 8 0s?Z
%€6°2 TS8°ST 8 00z
Lz 8LL % 8 0sT
zeste 98Z° €T L 001
160°¢C 018°' 0T 9 oS
L(£8°0 9°s kK 1) 8
%L 0 ove-s k/ 6
289°0 8T0°S \{ 8
0LG°0 0L9°Y € L
Los-o L9t Y £ 9
9Z%°0 008° € £ S
[A4 A\ 13 3% 3k 3 € k4
eeeo £99°¢ [4 €
000°0 000°¢ [4 4
000°0 000" 1 T T
000°0 000°0 0 0

aJueyaEp ueay i wwoawum

IWTeH



(6°y °by) s9aa] Lieuyg wmopuey uy [2aa] £q 89poN po3oadxy - #°V FIGVI

T000°0 2€00°0 <©ce0'0 8ZBI°0  %6Y9°0 ZTIS'T SISE"Z %89¥'Z 0008°T  0000°T o1
£000°0 TET0°0 8TOT°0 %ISY°0 SSTZ'T T160°T 9L¥E'T 8LLL'T  0000°T 6
Z€E00°0 09%0°0 9820 TLI6°0 9T08'T 9€0Z°T 00SL°T  0000°T 8
LZT10°0 L6ET0  %SZ9°0 %6LY°T 9820°T SYIL'T  000U°T L
Y9%0°0  9SSE°0  ZTZI'T  TIIR'T  £999°T  0000°T 9
€EET°0 €EEL°0 €EES'T  0009°T  0000°T S
€EEE0  L99T°T 000S'T  0000°T Y
£999°0 €E€E€°T  0000°T €
0000°T  0000°T z
0000° T 1
0000°0 0
ot 6 8 L 9 S v € z T Hwoaquw

1°A971

39



(€°y "ba) s931] A1wuyqg mopuey uy [9Aa7 Aq sayouedw pa3dadxy - SV FIAVL

€000°0 €900°0 %T90°0  €EEE'0 6STI'T  OSLE'Z  BO6T'E  €S8S°Z  OTET'T  000Z'0  0000°0 18 ot
»100°0 9SZ0°0  926T°0 0008°0  96/6°T  £996°Z  1%09°z  6L0Z°T  ZZZZ'0  0000°0 ot 6
€900°0  6880°0 TTTS'0  9SSS°T  T989°Z  9509°z  %96Z°T  00SZ°0 00000 6 8
¥S20°0 £99Z°0  TITT'T  €E€E€°Z  8LLS'T  000%°T  LS8Z°0 00000 8 L
6880°0  £999°0  6888°T  000S'Z  ZZZS'T  ECEE'0  0000°0 ¢ 9
£992°0  €EEE°T  EEEET  £999°T  000%'0  CS000 9 <
£999°0  0000°Z  €E€8°T  000S'0 00000 s y
€EEE'T  0000°C  £999°0  0000°0 y €
0000°Z  0000°T  0000°0 € z
0000°Z  0000°0 z 1
0000° T 1 0
13 ot 6 8 L 9 < v € z T vl

12A97]

18301

Jo

ooz

40



(L% "by) sa9sa] Laeuyqg wopuey ujy [oa9] Aq sardueoep a18ufs pojdodxy - 9°V A14VL

$S9%°0  S68T'T  %08%°'T  (961°T  %8OL'0  66Z€°0  €8ZI°0  6Y%0°0  %9T0°0  0000°0 ot
09T€°0  60€L°0  92Z8°0  6T09°0  TYZE°0  Y6ET°0  22S0°0  8610°0  0000°0 6
272Z°0  €099°0  €Y9¥°0  [SOE'0  TOST'0  ZT190°0  €%20°0  0000°0 8

€E9T°0  €662°0  089Z°0  SRST'0  %ZL0°0  9020°0  0000°0 L

0LZT*0  ZEOZ'0  €09T°0  Z980°0  L6€0°0  0000°0 9

£90T°0  £9YT°0  TZOT'O  €ESO'0  0000°0 S

000T°0  [9TT°0  0SL0°0  0000°0 v

TTIT°0  TTIT°0 000070 €

£99T°0  0000°0 z

0000° 0 1

0000° T 0

o1 6 8 ¢ 9 S v € z 1 wwoﬁ_“u

1227

41



(T- 12497 = 3 y3m s921] A1eujqg wmopuey uy [aaa] £q sayduedE) JO UOTIOERIZ paioadxy ‘44 °b3)

2931} hhﬂﬂﬁﬂ wopuesy uyg Hongm wopuey joO UOoflIaaIsBU] 103 mﬂomﬁhﬂﬁﬁoo JOo uoTINQTIISYIq ~ /°V JAI9V]

0000°0 9000°0 9S00°0 €0€0°0C %TOT'0 6SIZ°0 T06Z°0 O0SEZ°0 6I01°0 ZBI0°0O 0000°0 ot
T000°0 STO0°0 €6T0°0 0080°0 08610 £96Z°0 %09Z°0 8OZI'0 TZZO'O 0000°0 6
L000°0 6600°0 8950°0 8ILI'0 SB6T'0 S68T°0 O%YT°0 8BLI0°0 00G0° 0 8
CE00°0 EELE€0°0 68BET'0  LT6Z°0 2TZZE'0 OSLI'O0O LSEO°O 0000° 90 L
L{TTI0°0 TS60°0 8690 TLSE'O0 SLTIZ°0 9L%0°0 0000°0 9
Y9%0°0 TTIT°0 688E°0 8LLT'O L990°0 0000° 0 S
EEET°0  000%Y°0 £99€E°0 0O0OT°O 0000°0 Y
£CEE"0  000S°0  [991°0 0000°0 £
£999°0 €E€EE°0 0000° 0 4
0000°T 0000°0 1
0000° T 0
sTOoquAS
ot 6 8 L 9 S \/ t (4 1 0 jo ‘oN

¥ ‘suosyiedmon



(8% °b3a) x Suypoesoxy yBrsn
jo @31] Lieufq ® Mmol1H) 03 papadN STOquAS wopuey Jo iaqunN - §°V ATAVL

Z1$-01 2T €1 26° L€ 6
9526 LSS"6 €1°82 8
8Z1-8 089°9 £9° 02 L
v9-¢ €ES Y 20° ST 9
Z€-9 1€6°2 SL° 0T S
91-¢ 198°1 £5°¢ y
8-% $66°0 €1°¢ €
¢ 1690 €€ € 4
z 0 z 1
T 0 1 0
Az

a8uey (o ('nya yRrel

stoquAgs 3jJo aaquny

43



(zy 7 *ba) Ban 8a1) Lieupg jo uojiInqiaiejq d730r1dwlsy pazyjesioN - Y°V ZaNOT4
moran

01

44



REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7}

(8l

Abramowitz, M. and Stegun, I. (Ed) Handbook of Mathematical Functionms,
National Bureau of Standards Applied Mathematics Series, No. 55,
Washington, D.C., 1964.

Brown, G. and Rutemiller, H., "On the Probability Distribution of Tree
Depth for Randomly Grown 3inary Trees," (unpublished manuscript).

de Bruijn, N., Asymptotic Methods in Analysis, North-Holland, Amsterdam,
1961.

Feller, W. An Introduction To Probability Theory ard its Applicatioas,
Volume 1I, John Wiley and Sons, New York, 1966.

Jolley, L., Summation of Series, Dover, New York, 1961.

Knuth, D., The Art of Computer Programming, Volume 1, Fundamental
Algorithms, Addison Wesley, Reading, Massachusetts, 1973.

Knuth, D., The Art of Computer Programming, Volume 3, Sorting and
Searching, Addison Wesley, Reading, lassachusetts, 1973.

Renyli, A., and Szekeres, G., '"On the Keight of Trees,' Australian
Mathematical Society Jouranal, 7, 1967, p. 497.

45



